Understanding numpy.random.shuffle
The numpy.random.shuffle
function operates in-place, meaning it directly modifies the original array rather than creating a new shuffled copy. This is crucial for memory efficiency, especially when dealing with large datasets. It randomly rearranges the elements along the first axis of an array. If you’re working with a 1D array, this simply shuffles the elements. For multi-dimensional arrays, it shuffles the rows.
Important Note: numpy.random.shuffle
modifies the array directly. If you need to preserve the original array, remember to create a copy before shuffling:
import numpy as np
= np.array([1, 2, 3, 4, 5])
original_array = np.copy(original_array) # Create a copy
shuffled_array
np.random.shuffle(shuffled_array)
print("Original Array:", original_array)
print("Shuffled Array:", shuffled_array)
Shuffling 1D Arrays
Shuffling a one-dimensional array is straightforward:
import numpy as np
= np.array([10, 20, 30, 40, 50])
my_array
np.random.shuffle(my_array)print(my_array)
Each time you run this code, you’ll get a different randomized ordering of the elements.
Shuffling Multi-Dimensional Arrays
When working with multi-dimensional arrays, numpy.random.shuffle
shuffles the rows. Consider this example:
import numpy as np
= np.array([[1, 2, 3],
my_matrix 4, 5, 6],
[7, 8, 9]])
[
np.random.shuffle(my_matrix)print(my_matrix)
The rows of my_matrix
will be randomly permuted. The columns remain unchanged.
Setting the Random Seed for Reproducibility
For reproducible results, it’s essential to set a random seed using numpy.random.seed()
. This ensures that the shuffling sequence is consistent across multiple runs.
import numpy as np
42) # Set the seed
np.random.seed(
= np.array([1, 2, 3, 4, 5])
my_array
np.random.shuffle(my_array)print(my_array)
42) # Same seed, same shuffle
np.random.seed(= np.array([1, 2, 3, 4, 5])
my_array
np.random.shuffle(my_array)print(my_array)
By using the same seed (42 in this case), you’ll consistently get the same shuffled array.
Alternatives: numpy.random.permutation
While numpy.random.shuffle
modifies the array in-place, numpy.random.permutation
returns a new shuffled array, leaving the original array unchanged.
import numpy as np
= np.array([1, 2, 3, 4, 5])
my_array = np.random.permutation(my_array)
shuffled_array
print("Original Array:", my_array)
print("Shuffled Array:", shuffled_array)
This provides more flexibility, particularly when you need to preserve the original data. Choose the method that best suits your needs based on whether you need in-place modification or a new shuffled array.