Understanding DataFrames and Column Deletion
Before diving into the methods, let’s briefly revisit DataFrames. A DataFrame is a two-dimensional labeled data structure with columns of potentially different types. Deleting a column permanently alters the DataFrame. Therefore, it’s often advisable to create a copy before performing any column deletion to avoid unintended changes to your original data.
We’ll use the following DataFrame for our examples:
import pandas as pd
= {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
data 'Age': [25, 30, 22, 28],
'City': ['New York', 'London', 'Paris', 'Tokyo'],
'Salary': [60000, 75000, 55000, 80000]}
= pd.DataFrame(data)
df print(df)
This will output:
Name Age City Salary
0 Alice 25 New York 60000
1 Bob 30 London 75000
2 Charlie 22 Paris 55000
3 David 28 Tokyo 80000
Method 1: Using del
keyword
The del
keyword provides a straightforward way to delete a column. However, it modifies the DataFrame in place.
= df.copy()
df_copy
del df_copy['City']
print(df_copy)
This removes the ‘City’ column.
Method 2: Using pop()
method
The pop()
method removes a column and returns it as a Series. This is useful if you need to retain the deleted column for later use. Like del
, it modifies the DataFrame in place.
= df.copy()
df_copy
= df_copy.pop('Salary')
city_column print(df_copy)
print(city_column)
This removes ‘Salary’ and prints the remaining DataFrame and the ‘Salary’ Series.
Method 3: Using drop()
method
The drop()
method offers more flexibility. It can remove rows or columns, and it allows you to specify an axis (0 for rows, 1 for columns). Crucially, it doesn’t modify the DataFrame in place unless you specify inplace=True
.
= df.copy()
df_copy
= df_copy.drop('Age', axis=1)
df_copy print(df_copy)
#Remove multiple columns
= df.copy()
df_copy = df_copy.drop(['Age', 'City'], axis=1)
df_copy print(df_copy)
#Inplace Modification
= df.copy()
df_copy 'Name', axis=1, inplace=True)
df_copy.drop(print(df_copy)
The drop()
method is generally preferred for its flexibility and the option to avoid in-place modification. Remember to always consider whether you need to preserve the original DataFrame. Using .copy()
before performing any column deletion operation is a best practice to ensure data integrity.